Exponential Equations and Logarithmic Equations

Consider the problem:

The population of Bongotown is 1025. Every year the population increases by a factor of 1.21.

A. Write an equation modeling the situation. $P = 1025 \cdot 1.21^t$

B. How many people live in the town in 5 years? $P = 1025 \cdot 1.21^5 = 2658$

C. How long until the population increases to 1500? $1500 = 1025 \cdot 1.21^{t}$

 $1.463 = 1.21^t \rightarrow \text{Now What}????$

To solve this problem and ANY problem like this, we need to create something new to handle the math.

Logarithms are functions which are inverses of exponential equations.

They look like: $log_4x \rightarrow$ The little, subscripted number is called the base.

 $log_4 x$ is the inverse of the function 4^x .

THE FOLLOWING IS THE MAJOR POINT OF THIS CHAPTER:

Every equation involving exponential functions can be written as an equation involving logarithmic functions.

$$y = b^x$$
 \Leftrightarrow $x = log_b y$
Exponential Equation

Ex: Write the equation $5 = 17^{x}$, in LOGARITHMIC form.

 $5 = 17^x$ is of the form $y = b^x \rightarrow y = 5$, b = 17, $x = x \rightarrow so x = log_b y$ becomes $x = log_{17} 5$

Ex: Write the equation, $6 = log_2 w$ in EXPONENTIAL form.

 $6 = log_2 w$ is of the from $x = log_b y \rightarrow x = 6$, b = 2, $y = w \rightarrow so y = b^x$ becomes $w = 2^6$

Ex: Solve the equation: $8 = log_3 x \rightarrow$ CHANGE to $x = 3^8 = 6561$

Ex: Solve the equation: $x = log_3 81 \rightarrow$ CHANGE to $81 = 3^x \rightarrow 3$ to what power is 81? x = 4

Ex: Solve the equation: $\frac{1}{2} = log_{64}x \rightarrow \text{CHANGE to } x = 64^{\frac{1}{2}} = \sqrt{64} = 8$